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Bayes and Kalman Filter
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Combining Two Noisy Measurements

» recall from the last lecture that the minimum variance
estimate for combining two noisy measurements
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» claim: the estimate is a special case of the discrete Kalman
filter algorithm
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Discrete Kalman Filter

» estimates the state X of a discrete-time controlled process
that is governed by the linear stochastic difference equation
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Components of a Kalman Filter

A[ Matrix (nxn) that describes how the state evolves from
_Ltet=T without controls or noise.

i1~ €

Bt Matrix (nxl) that describes how the control u; changes

the state fromj,te/t;l. and maps contal U, P Shl X
£

C Matrix (kxn) that describes how to map the state X; to
] an observation z,.

Random variables representing the process and

measurement noise that are assumed to be

5t independent and normally distributed with covariance
R, and Q; respectively.
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Combining Two Noisy Measurements

» combining two noisy measurements of a fixed scalar quantity
is a static 1D-state estimation problem

the state does not evolve as a function of time and does not depend
on any control input

A=1, B =0 R=0 X =AX_+Bu, +.

K(JN(N‘
» our measurements are direct (noisy) measurements of th

state
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Combining Two Noisy Measurements

» start by initializing the Kalman filter with the first
measurement and its variance

estimated _
H =X

state

estimated

state > | =0 12

covariance

» now substitute into the Kalman filter algorithm
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Plant or Process Model

» describes how the system state changes as a function of time,
control input, and noise

X = A[Xt—l + Btut T &

X, state at time t

U, control inputs at time t

&, process noise at time t (assumed Gaussian with covariance R))
A state transition model or matrix at time t

B, control-input model or matrix at time t

» note that the mode@and assumes additive Gaussian

noise |
G maivy
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Example: Omnidirectional Robot

» an omnidirectional robot is a robot that can move in any
direction (constrained in the ground plane)

» if we are not interested in the orientation of the robot then
its state is simply its location

X =
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Example: Omnidirectional Robot

» a possible choice of motion control is simply a change in the
location of the robot
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Measurement Model

» describes how sensor measurements vary as a function of the
system state

z, =C. X + 0,

Z, sensor measurement at time t
O; sensor noise at time t (assumed Gaussian with covariance Q,)

Ct observation model or matrix

» notice that the model is linear and assumes additive Gaussian
noise
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Kalman Filter

» the Kalman filter is a provably optimal (in terms of least-
squared error) algorithm for fusing sensor measurements to
produce an estimate of the state and the state covariance

'k °
Xt'Mstate at time t

2., state covariance at time t
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Kalman Filter

» the Kalman filter estimates a process in two stages

prediction: current state and state covariance estimates are
projected forward in time to predict the new state and state
covariance

“time update equations”
correction: the sensor measurements are incorporated into the

predicted state to obtain improved estimates of the state and state
covariance

“measurement update equations”

measurement update
(correct)

time update
(predict)

VD
) 4
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Kalman Filter Algorithm

I. Initialization
choose (guess) initial values for mean state and state covariance
estimates
Ky
20
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Kalman Filter Algorithm

2. Prediction:
predict the next state using the plant model

e =Ap  +BuU — P'M# NOM

predicted state covariance grows (because we are not
incorporating the sensor measurements yet)

Et — A[zt—lA[T + Rt

R, covariance of the plant noise
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Kalman Filter Algorithm

3. Correction: correct the predicted state using the sensor
measurement

expected value of measurements (from measurement model)
Zt :Ct—t _— VVLQgSUr(’/Vw.‘/ W\.oa(lj

difference between actual and expected measurements

I, =4, — Z,

measurement covariance

S, =C, it CtT +Q,
Kalman gain

Kt :it CtT St_l
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Kalman Filter Algorithm

4. State and state covariance:

new state estimate incorporating most recent measurement
My = My + Kt I
new state covariance estimate

2 :(I - K, Ct)it
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