
Day 22

Bayes and Kalman Filter
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Combining Two Noisy Measurements

3/16/20182

 recall from the last lecture that the minimum variance 
estimate for combining two noisy measurements

 claim: the estimate is a special case of the discrete Kalman
filter algorithm
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Discrete Kalman Filter
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 estimates the state x of a discrete-time controlled process 
that is governed by the linear stochastic difference equation

with a measurement

tttttt uBxAx  1

tttt xCz 

plant model
process model

measurement model
observation model
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Components of a Kalman Filter

t

Matrix (nxn) that describes how the state evolves from 
t to t-1 without controls or noise.tA

Matrix (nxl) that describes how the control ut changes 
the state from t to t-1.tB

Matrix (kxn) that describes how to map the state xt to 
an observation zt.

tC

t

Random variables representing the process and 
measurement noise that are assumed to be 
independent and normally distributed with covariance 
Rt and Qt respectively.
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Kalman Filter Algorithm 

1. Algorithm Kalman_filter( t-1,t-1, ut, zt):

2. Prediction:
3.
4.

5. Correction:
6.
7.
8.

9. Return t,t

ttttt uBA  1

t
T
tttt RAA  1

1)(  t
T
ttt

T
ttt QCCCK

)( tttttt CzK  

tttt CKI  )(



Combining Two Noisy Measurements
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 combining two noisy measurements of a fixed scalar quantity 
is a static 1D-state estimation problem
 the state does not evolve as a function of time and does not depend 

on any control input

 our measurements are direct (noisy) measurements of the 
state
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Combining Two Noisy Measurements
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 start by initializing the Kalman filter with the first 
measurement and its variance

 now substitute into the Kalman filter algorithm
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Plant or Process Model
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 describes how the system state changes as a function of time, 
control input, and noise

 state at time t
 control inputs at time t
 process noise at time t (assumed Gaussian with covariance Rt)
 state transition model or matrix at time t
 control-input model or matrix at time t

 note that the model is linear and assumes additive Gaussian 
noise

tttttt uBxAx  1

tA

tu

k

tx

tB



Example: Omnidirectional Robot
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 an omnidirectional robot is a robot that can move in any 
direction (constrained in the ground plane)
 http://www.youtube.com/watch?v=DPz-ullMOqc
 http://www.engadget.com/2011/07/09/curtis-boirums-robotic-car-

makes-omnidirectional-dreams-come-tr/

 if we are not interested in the orientation of the robot then 
its state is simply its location

t
t y

x
x 












Example: Omnidirectional Robot
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 a possible choice of motion control is simply a change in the 
location of the robot

 with noisy control inputs
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Measurement Model
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 describes how sensor measurements vary as a function of the 
system state

 sensor measurement at time t
 sensor noise at time t (assumed Gaussian with covariance Qt)
 observation model or matrix

 notice that the model is linear and assumes additive Gaussian 
noise

tttt xCz 

tz
t
tC



Kalman Filter
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 the Kalman filter is a provably optimal (in terms of least-
squared error) algorithm for fusing sensor measurements to 
produce an estimate of the state and the state covariance
 state at time t
 state covariance at time tt

tx



 the Kalman filter estimates a process in two stages
1. prediction: current state and state covariance estimates are 

projected forward in time to predict the new state and state 
covariance

 “time update equations”

2. correction: the sensor measurements are incorporated into the 
predicted state to obtain improved estimates of the state and state 
covariance

 “measurement update equations”

Kalman Filter
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time update
(predict)

measurement update
(correct)



Kalman Filter Algorithm
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1. Initialization
 choose (guess) initial values for mean state and state covariance 

estimates
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Kalman Filter Algorithm
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2. Prediction:
 predict the next state using the plant model

 predicted state covariance grows (because we are not 
incorporating the sensor measurements yet)

 covariance of the plant noise

ttttt uBA  1

t
T
tttt RAA  1

tR



Kalman Filter Algorithm
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3. Correction: correct the predicted state using the sensor 
measurement

 expected value of measurements (from measurement model)

 difference between actual and expected measurements

 measurement covariance

 Kalman gain

ttt Cz 

ttt zzr 

t
T
tttt QCCS 

1 t
T
ttt SCK



Kalman Filter Algorithm

3/16/201817

4. State and state covariance:
 new state estimate incorporating most recent measurement

 new state covariance estimate

tttt rK 

  tttt CKI 


